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DYNAMICS OF SPACECRAFT CONTROL LABORATORY 
EXPERIMENT (SCOLE) SLEW MANEUVERS 

Y. P. Kakad 

Dept. of Electrical Engineering 
University of North Carolina at Charlotte 

Charlotte, NC 28223 

SUMMARY 

This is the first report of a set of two reports on the dynamics and control of 
slewing maneuvers of NASA Spacecraft Control Laboratory Experiment (SCOLE) 
article. In this report, the dynamics of slewing maneuvers of SCOLE are developed 
in terms of an arbitrary maneuver about any given axis. The set of dynamical 
equations incorporate rigid-body slew maneuver and three-dimensional vibrations 
of the complete assembly comprising the rigid shuttle, the flexible beam, and the 
rdector with an off set mass. The analysis also includes kinematic nonlinearities of 
the entire assembly during the maneuver and the dynamics of the interaction 
between the rigid shuttle and the flexible appendage. The final set of dynamical 
equations obtained for slewing maneuvers are highly nonlinear and coupled in 
terms of the flexible modes and the rigid-body modes. 

The equations are further simplified and evaluated numerically to include the 
first ten flexible modes and the SCOLE data to yield a model for designing control 
systems to perform slew maneuvers. 
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1. INTRODUCTION 

The primary control objective of the Spacecraft Control Laboratory Experi- 

ment (SCOLE) is to direct the RF Line-Of-Sight (LOS) of the antenna-like 

configuration towards a fixed target under the conditions of minimum time and 

limited control authority 111. This problem of directing the LOS of antenna- like 

configuration involves both the slewing maneuver of the entire assembly and the 

vibration suppression of the flexible antenna-like beam. The study of ordinary 

rigid-body slew maneuvers has received considerable attention in the literature 

[2,31 due to the fact that any arbitrary largeangle slew maneuver involves 

kinematic nonlinearities. This is further complicated in the case of SCOLE by vir- 

tue of a flexible appendage deployed from the rigid space shuttle. The dynamics of 

arbitrary large-angle slew maneuvers of SCOLE model are derived in this report as 

a set of coupled equations with the rigid-body motions including the nonlinear 

kinematics and the vibratory equations of the flexible appendage. 

The dynamical equations of slewing maneuvers of this large flexible spacecraft 

are developed by writing the total kinetic and potential energy expressions for the 

entire system. The energy expressions are further utilized in formulating 

Lagrange's equations which are expressed in terms of non-generalized co-ordinates 

using an inertial co-ordinate system and a body-fixed co-ordinate system at the 

point of attachment of the flexible beam to the shuttle. The generic model used for 

this analysis consists of a distributed parameter beam with two end masses. The 

three dimensional linear vibration analysis of this free-free beam model with end 

masses [41 is incorporated together with rigid-slewing maneuver dynamics which 

are written in terms of four Euler parameters 151 and angular rotation about an 

arbitrary axis of rotation to yield the final set of highly nonlinear and coupled 

equations. In the derivation of the equations, it is assumed that the vibratory 

analysis is for small motions. 
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2. LIST OF SYMBOLS 

I 

a ( z  

B Damping matrix 

Position vector of mass element on the beam from the point 
of attachment 

c Inertial frame to body-fixed frame transformation 

- C Position vector from the point of attachment to the mass center 
of the beam 

D Mass density of the beam 

d ( z  ,t ) 

E Modulus of Elasticity 

E (t ) 

- F (t ) 

(t ) 

Displacement vector of mass element in the body-fixed frame 

Force applied at  the orbiter mass center 

Force applied at  the reflector mass center 

Moment applied about the orbiter mass center 

Modulus of rigidity for the beam G$ 

I Beam cross section moment of inertia 

1% Beam cross section moment of inertia, roll bending 

4 
I1 

Beam cross section moment of inertia, pitch bending 

Mass moment of inertia matrix of the shuttle 

1 2  

J 

L 

M Angular velocity vector transformation 

m Total mass of the flexible beam 

Mass moment of inertia matrix of the reflector 

Mass moment of inertia matrix of the beam 

The Length of the beam 

m l  Mass of the orbiter 

m2 Mass of the reflector 

n 

4r Generalized coordinates 

The maximum number of modes considered 
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E Position vector of the mass center of the orbiter in the inertial 
frame 

- r Position vector from the orbiter mass center to the point of 
attachment 

r X  x co-ordinate of the reflector mass center in the body-fixed 
frame 

y co-ordinate of the reflector mass center in the body-fixed 
frame 

rY 

T Total Kinetic Energy 

U Total Potential Energy 

u, ( z  ,t ) The beam deflection in x direction referred to the body- 
fixed frame 

uy ( z  ,t ) The beam deflection in y direction referred to the body- 
fixed frame 

u,,,(z ,t ) The torsional deflection about z axis in the body- 
fixed frame 

- V Velocity vector of the mass center of the orbiter in the body- 
fixed frame 

Yo Velocity vector of the point of attachment in the body- 
fixed frame 

P Mass per unit length of the flexible beam 

L Vector representing the axis rotation during the slew 
maneuver 

@xi i th  Eigenfunction corresponding to ux 

@ yi 

@$i 

i th  Eigenfunction corresponding to u,, 

i th  Eigenfunction corrsponding to u+ 

- e The attitude of the orbiter in the inertial frame 

e Slew Angle 

o_ The angular velocity of the orbiter in the inertial 
f Tame 

- IR The angular velocity of the reflector in the inertial 
frame 

3 Damping ratio 
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c = 

3. ANALYTICS 
Co-ordinate Systems 

The motion of SCOLE assembly when considered as a rigid body in space has 

 COS^^ sine3 0 
-sine3  COS^^ 0 

0 0 1  

six dynamic degrees of freedom: three of these d e h e  the location of the mass 

center, and three define the orientation (attitude) of the body. The motion of this 

rigid body is goverened by newtonion laws of motion expressed in terms of 

changes in linear momentum and angular momentum. These relationships are 

valid only when the axes along which the motion is resolved are an inertial frame 

of reference 19,101. To d e h e  the orientation of the orbiter in space, a set of orthog- 

onal axes fixed in the body is utilized. Then the attitude of the orbiter is defined in 

terms of the angles (el,e2,63) between the body- fixed axes and the inertial co- 

ordinate axes. The body-fixed frame origin is located at  the point of attachment of 

the flexible appendage with the rigid shuttle for this analysis (Fig. 1). 

The transformation from the inertial frame to the body-fixed frame is given 

by the matrix, C as developed in figure 2 where if L , j , k represent the dexteral 

set of orthogonal unit vectors fixed in the body- fixed frame and el is the rotation 

about 7, e2 is the rotation about 7 and e3 is the rotation about k'. These rotations 

are carried out successively as shown in figure 1 and the matrix C is given as 

* - + +  

 COS^^ 0 -sine2 
0 1  0 

sine2 0 COS@, 

Thus CT is obtained as 
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= 

In order to completely define the attitude (orientation), it is needed to relate 

the rotation angles 81, e,, and e 3  to the angular velocity components (a1, a,, a,) 

of the orbiter. One way of obtaining the required relations is via body-three angles 

method [51 which was utilized in developing C matrix in equation (1) and these 

relations are 

COS~,COS~,  sine3 o 
-cose2s~e3 o 

sine , 0 1  

Thus, the angular velocity of the orbiter can be obtained in the inertial frame 

by means of the following transformation 

w _ =  M T &  

where the transformation MT is given as 

(4) 

Although the body-three angles method is used here for obtaining the 

transformations C and M ,  there are three other methods which can be used to 

obtain the same transformations. A detailed discussion of all the methods is given 

in reference [51 and a summary of the transformations using the remaining three 

methods is given in the Appendix. 

Kinetic Enernv 

If the position vector of the mass center of the orbiter in the inertial frame 

(Fig. 3), Z?, is given as 
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- a =  

then the velocity of the mass center in the inertial frame is 

0 
0 
z 

This velocity can be transformed in the body-fixed frame as 

The velocity of the point of attachment in the body-fixed frame is 

= X+&XL (9) 

wherer  is the vector from orbiter mass center to the point of attachment. 

Defining the position vector (Fig. 41, a, of a mass element on the beam from 

the point of attachment (origin of the body-fixed frame) before deformation as 

and the displacement vector of this mass element as 

(10) 
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4 - c =  

the position vector after deflection is given as g+d. The kinetic energy in the 

beam 161 is 

0 -c, cy 

c, 0 -c, 

-cy c, 0 

where the vector c is from the point of attachment to the mass center of the beam 

and if it is assumed that the beam is a thin rod, then it is given as 

J = ( l / 3 ) p L 3  

0 
0 

--L / 2  

1 0 0  
0 1 0 
0 0 0  

(13) 

and using the skew symmetric form for the vector cross product for any two vec- 

(14) 

(15) 
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1% 
1/2(pds  )s2 0 0 

0 l / 2 ( p d s ) s 2  0 
0 0 0 

G' 
iY ' 

6, 

The kinetic energy equation ( 1 2 )  can be simplified as 

where 

(16)  



~~ 

and 

~ 
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- & ( t ) =  p 

&t 1 = p 

n 
C P 1i i i  

f = 1  

i P 2 f 4  
i =  1 

0 

n 
C P 41 ii 

i = 1  
n c P 31 4 

f = 1  

0 

(19) 

(20) 

The expressions for p l i  , p zf , p 3i , p 4i , p 

that 

, and p 61 are developed as follows. Note 

@,i (S = A,, sinP s + BXi cosP s +Cxi sinhfl s + D,, coshP s 

1/4 
w h e r e / 3 i = [ F l  d P  

Since for SCOLE configuration ETx = ETy and Pi, = P i ,  , ET and p i  are used 

for both @ x f ( s )  and @yi ( s> .  However, this may not be true for other 

configurations. 

p 11 = [ -Axf cosPi L +Bxf sincr, +Cxi cosh& L 
Pf L 2  

I + Dxi sinhP L +A,, -Cxi 

Defining cr, = Pf  L 
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[ -Axi cosai +Bxi Sinai +Cxi coshai +Dxi sinhai +Axi -Cxi I 1 
p l i  = 

similarly, 

-Ayi cosPi L +Byi sinPi L 

p 2 i  - - -& [ -Ayi cosai +Byi Sinai +Cyi coshai +Dyi sinhai +Ayi -Cyi 

and these can be given as 

+p: 
L sinhP L coshP L - 

Pi Pi2 
L coshP L sinhP L 

Pi2 

~ 3 i  = Axi 

L 'sinhai - L 2coshcxi +'I 
ai 2 a; 

L 2coshai - L 2sinhai 

Similarly, 

sinPi L L cosPi L 
~ 4 i  = Ayi Pi - + I +  

LcoshPiL sinPiL I + D y i  1 LsinhPiL coshPiL - - +'I 
Pi2 Pi Pi2 Pi2 
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and these can be shown to be 

L 1 
2 4P i 

cos2P L - -sinh2P L + -cosh2P L - - 
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sinP L sinhP L 

- 1 [ (cosPi L sinhPi L )-(sinpi L coshPi L ) 
Pi  

L sinhP L )- (COSP L coshP L ) cosp L sinhP L 

- 1 [ (cosp L sinhP L >- (sinP L coshP L ) 
Pi 

3 
&L2 1 fiiLcosh2BiL+(-+-)sinh2fliL-- 

2 4Pi 

L 1 
2 4P i 

cos20 L - -sinh2P L + -cos2P L - - 

ai The equations (25) and (26) can alternatively be derived by replacing P i  = - 
L '  

The kinetic energy of the reflector is 
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where m 2  is the mass of the reflector and I2 is the mass moment of inertia matrix 

of the reflector. The deflection vector & ( L )  at the mass center of the reflector is 

given as 

- d ( L ) =  

and the position vector from the point of attachment to the reflector mass center is 

given by 

- a(,!,)= 
r, 
'Y 
-L 

(29) 

The angular velocity of the reflector in the inertial co-ordinate system Q can be 

shown to be 

The equation (27) can be simplified as 
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1 0 0  
I, = 11+(1/3) pL3 0 1 0 

0 0 0  

where 

+ I L + J 2 - p L E - p L E - m E - m a ( L )  

The kinetic energy of the shuttle, To , is given as 

where m l  is the mass of the shuttle and Il is the mass moment of inertia matrix 

of the shuttle. 

The total kinetic energy is given as 

T = T0+T1+T2 (35) 

This can be s I I I iplified as 

where 

m, = ml+pL+m2 
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The term J 2  in this equation can be shown to be: 

where 

The total kinetic energy expression can be further simplified as 

T = (1/2)m0JLTJL+gT (37) 

[A31 = 

In this equation 

Here i=2,3, ....., n. The number n indicates the total number of flexible modes con- 

sidered. 

Eauations of motion 
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Lagrange’s equations of motion for the case of independent generalized co- 

ordinates qk are 

where, T = T ( a i )  is the kinetic energy 

U = U (a) is the potential energy, and 

Qk are the generalized forces arising from nonconservative sources. 

The generalized co-ordinates are: 

Rx ,Ry ,Rz - position of orbiter mass center relative to inertial frame origin. 

&,&,e3 - roll, pitch and yaw angles of orbiter. 

q 1,q2,.....,qn - modal deformation co-ordinates for the beam. 

The previous kinetic energy expression developed in equation (37) is given in 

terms of nonholonomic velocities E and o, and generalized velocities 4.. Using the 

notation F ( V , o , i )  for this kinetic energy expression and T for kinetic energy 

expression in terms of generalized velocities, the equations of motion are developed. 

Thus, equation (37) is rewritten as 

T = (1/2)m,,ETE +aT H E + (1/2)aT I,, o_+ ET A l  4. (37) I1  I 1  I I  
4. + (1/2) iT [A3]4. 

[a) Translational Equations 

From the chain rule applied to equation (37) using equation (81, one gets 
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Also, the generalized forces are CF_(t where 

a t  1 = & ( t  )+E& 1 (40 

( t  1 represents the force applied at  the orbiter mass center and F,(t ) represents 

the force applied at  the reflector mass center. From Lagrange’s equations 

and from equation (37) 

[ = m , y - H o + A i  

Substituting equation (1 2 ) in (4 1 ), 

m,l?-H&.+Az = -CkT(moy-Ho_+A&) + F ( t  ) (43) 

This can be rewritten as 

m , E -  H & + A Z =  & + F _ ( t )  

where the nonlinear term ZVr is given as 

N 1 -  - - C d T ( m o y - H g + A & )  
= -Z,(m,Y-Ho_+A &> 

Here, & = C k T .  

[b) Rotational Eauations : 

From equation (4) 

Again using the chain rule 

(44) 

(45) 



Also 

It can be shown that 

and 

&= V T C  C i=1,2,3 ,....... a 4  - 80, 

and 

From equation (37), 

and as before 

a T +  l a 4  

i = 1,2,3 ,....... 

(49) 
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Using the Lagrange's equations 

where G_ is the net moment about the mass center of the orbiter with respect to 

the body-fixed frame. It is given as 

G, = + (r+g)x& (52 1 

G-, is the external moment applied about the mass center. Eqation (51) can be 

simpified by substituting equations (42),(49), and (50) together with the relation- 

ship developed in (46) as 

z& + I&+ A 2  = + N - 2  

where the nonlinear term N2 is given as 

(53 1 

[c) Vibration Eauations of the Beam 

Since T in equation (37) is given in terms of 4- which is a vector of general- 

ized velocities, 

and 



- 2 1  - 

K =  

The potential energy in the beam is given by 

\ o  
kii 
O \  

U = (1/ 2)gTKg 

- e = 

where the stiffness matrix K is given as 

€1 

e2 = Lsin 

€3 

h 
2 

and 

kii = EI p: 

G,,, represents the modulus of rigidity of the beam and fl,,,i = 

the mass per unit volume (mass density) of the beam. Thus, 

Using the Lagrangian Equations (38) and assuming that F 2  = 0 ,  

(561 

(571 

1 
2 
- 

where D is 

(d) Slewinrr Eauations 

If it is considered to perform a slew maneuver about an arbitrary axis L a n d  

the slew angle to be 5, then the slew maneuver can be expressed in terms of four 

Euler parameters. These four Euler parameters are defined as 

(60) 
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L 
2 

€4 = cos (61) 

and their derivatives with respect to time are given as 

If a slew maneuver is considered to be purely rotational, then the transla- 

tional velocity and acceleration can be shown to be negligible during the slew 

maneuver and only the rotational and yibration equations are reqired for the 

analysis and they are simplified by setting ~ E Q  in both (53) and (59) and are 

written as follows 

Thus equations (62) - (65) completely represent the dynamics of the slew 

maneuver. These equations are nonlinear and coupled including both the rigid- 

body dynamics and the dynamics of the flexible appendage with kinematic non- 

linearities. It is important to note that the nonlinear term N 2 ( d  is dependent on 

the rotational velocity and as a result determined by the slew maneuver rate. Thus 

the basic slew maneuver stretegy has to be developed before this term can be 

linearized. 

[e) Vibration Eauations of the Beam with DamDinrr 

If damping is included in the derivation of vibration equations of the beam, 

then the damping effect can be expressed in terms of frictional forces. These are 

nonconservative, retarding forces and are assumed to be proportional to the gen- 

eralized velocities. In deriving the vibration equations by means of Lagrange's 
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equations, the following function is introduced 

It also has a positive definite quadratic form similar to the kinetic and poten- 

tial energy expressions. 

With this definition, Lagrange’s equations assume the form 

Again, as before 

and 

and it can be seen from (66) that 

where the damping matrix B is symmetrical and is given as 
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The vibration equations are given as 

A ? ~ + A ; & + A ~ + B ~ = - K K ~ _  . 
The slewing equations (64) and (65) would be modified as 

1 2 & +  A z =  G ( t )  + &(e) 
A ; & + A ~ + B ~ _ = - K .  

Nonlinear Term in the Rotational Euuations 

The nonlinear term E2 in the rotational equations (64) and (71) during the 

slewing maneuver is simplified as 

(70) 

(71) 
(72) 

a2= M - l  

where 

(-o1sin02co~0~ + 02sin02sin03 + 03cos62) . (76) I 
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Since the transformation matrix, M , is a function of 02  and 63, the time 

derivative of M can be expressed by the chain rule as 

From equation (5 )  

0 0 0 
0 0 0. 

Substituting these equations (78) and (79) in (77) 

From equation (41, this can also be expressed as 

n ; l = -  1 
cose2 



cosO2(0 lcos02sine3+o ,cos0 2cos03) I 

Also, M-' is given as 

(81) 

cos0 cos0 ,sin0 - sine 2cos0 

0 0 cos0 2 

M- '=  - - sine3 cos0 ,cose3 sin0,sine 
cos02 

Thus, the nonlinear term N 2  can be rewritten as 

N 2  = A3c0.B [Ioo_+A9] 

(82) 

Where the term A is 

A3(0.€lJ= M-' 
0 1  

where A depends on the rigid-body slewing and is nonlinear in terms of o_ and &. 

The second term relates the coupling between the rigid-body slewing and the flexi- 

ble modes. 
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- r = 

4. NUMERICAL DATA 

0.036 
-0.036 
- 0.3 79 

The analytics developed in the previous section are utilized together with the 

basic SCOLE data 111 and the three dimensional linear vibration analysis [41 to 

generate the following numerical data. 

- c =  

m 1 = 6366.46slugs. ; m = 12.42slugs. ; p = 0.0955slugs I f  t. ; L = 130 f t. 

G + =  7.2E+81b/ft2;(EI), = (EIIY = (El)= 4E+71b-ft2; 

r 

0 
0 

>-65.0. 

I z =  
18000.0 -7570.0 0.0 
-7570.0 27407.0 0.0 

0 0.0 27407.0 

905443.0 0.0 145393.0 
0.0 6789100.0 0.0 

145393 .O 0.0 7086601.0 

The three dimensional vibration analysis is given in terms of the first ten 

modal frequencies and mode shapes in table 1. Here, 

ais ais ais ais  
&xi (s ) = A,i sin-+BXi cos-+Cxi sinh-+Dxi cosh- L L L L 

ai S ai s ais ai s 
&yl (s ) = A,, sin-+Byi cos-+Cyi sinh-+Dyl cosh- L L L L 



- 28 - 

I, = 

Using these data the following matrices are obtained. 

1216640 15167.53 -115118.9 
15108.34 7083005 -52474.84 
- 115096 -52503.9 7131493 



THREE DIM1 
MODE No. 
FREQ. (Hz.) 

B ;  
MODE No. 

FREQ. (Hz.) 
a! 

Ax 
Bx 

B ;  
MODE No. 

FREQ. (Hz.) 
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TABLE 1 

FIRST TEN FLEXIBLE MODES OF SCOLE MODEL 

JSIONAL MODE SHAF 
1 
0.27804240E+00 
0.120 12084E+01 
O.l6282665E+OO 

-0.1698345OE+OO 
0.196 16259E+00 

0.57579133E-02 
0.1 1810057E-01 

0.1 93 60955E-0 1 

-O.l9670286E+OO 

-0.102746 18E-0 1 

-0S7220462E-02 

-0S0748354E-0 1 
0.1397801 8E-04 
2 
3 

0.81300189E+00 
0.20540387E+01 
0.40868 188 

-0.6 1958845 

0.6 1880796 
-0.22438404 
0.36509234 
0.243 9044 7 

-0.36464758 
0.566 1 1842 
0.92698901 

-0.87320799 

-0.4 1309992 

4 

I 
I 
I 
'I 
I 
I 
I 
I 
1 
1 
'I 

3-0 1 
3-0 1 
3-01 
z-0 1 
3-01 
3-0 1 
3-0 1 
3-0 1 
2-01 
3-0 1 
3-05 

J 

0.2 05 36 300E+O 1 
0.32645546E+01 
0.99278129E-01 

-0.92344553E-01 
-0.99442 145E-01 
0.9222580 1E-0 1 

-0S7396019E-01 
0.53976008E-0 1 
0.581 14853E-01 

-0.5 3906 980E-0 1 
O.l4300062E+OO 

-0.16588614E-02 
0.6 1861 804E-07 

CHARACTERISTICS 
r )  
L 

0.3 1357296E+00 
0.12756518E+01 
0.3885529 1E-02 

-0.433 2 101 8E-02 
0.1498582OE-01 
0.142 1978 1E+00 

-0.226 9579 7E+00 
-0.19283105E+00 
0.2264456 1E+00 
0.2 183505 8E-01 
0.3 11 15282E-01 

-0.7599233 7E-05 

-0.1499838 7E-01 

4 
0.11856099E+Ol 
0.2480468 7E+01 
0.80641 794E-01 

-0.80913938E-01 
0.671063 16E-01 

-0.6723337 7E-01 

0.13728679E+OO 
-0.11746932E+00 

0.1 1725057E+00 
-0.14085209E+00 

0.825 5 769 3E-0 1 
-0.16 1 58 93 4E-03 
0.10437718E-07 
6 
0.497 16090E+01 
0.497 16090E+01 
0.457 39784E-O 1 

-0.45763 106E-01 
0.463 29676E-0 1 

-0.7995285 3E-0 1 
-0.78914485E-01 
0.79891039E-01 
0.33 165303E+00 

-0.93394833E-05 
0.1501721 1E-09 

-0.4636558 1E-01 

0.786 12940E-01 
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THREE DIM 
MODE No. 

dSIONAL MODE SHAl 
7 

FREQ. (Hz.) 
a 

A X  

BX 
CX 
0% 
A, 
BY 
CY 
DY 
a+ 
A ,  
B* 

MODE No. 
FREQ. (Hz.) 

Ax 
a 

0.55 15 78 33 E+O 1 
0.5350 1560E+01 
0.8131 1804E-01 

-0.82056569E-01 
-0.81 344923E-01 
0.8 1 99 7259E-0 1 

-0.47 145439E-01 
0.47703590E-01 
0.47289807E-01 

-0.47669 155E-01 

-0.23855560E-02 
0.33 122041E-07 
9 

0.384081 10E+00 

0.78 74 3585E-01 
-0.78755259E-01 
-0.78752483E-01 

-0.4556 9244E-01 

0.4560 7884E-01 
-0.45587726E-01 

0.94995483E-03 

0.7871 7693E-01 

0.4560 94 74E-0 1 

0.89760145E+00 

-0.5643 7766E-08 

Z CHARACTERISTICS 
8 - 
0.12281249E+02 
0.79833305E+01 
0.4483506 1E-01 

-0.448 34 9 1 4E-0 1 
-0.4484050 8E-0 1 
0.44 8 1 3000E-0 1 
0.77404756E-0 1 

-0.7746562 9E-0 1 
-0.7747532 7E-01 
0.7742 7782E-0 1 

0.1583037 1E-05 
0.8551 8 143E+00 

-0.9871501 7E-11 
i n  - -  
0.23679520E+02 
0.1 1085347E+02 
0.4434 8 4 9 8 ~ - 0 i  

-0.44367373E-01 

0.4435 1763E-01 
0.76 707490E-01 

-0 767 33 6 1 2E-0 1 
0.76735779E-01 

-0.51 105957E-06 
0.16528495E-11 

-0.4435051 lE-01 

-0.76762782E-01 

O.l6488784E+Ol 
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0.45879E+2 
0.36305E- 1 
-0.89042E- 1 
-0.14067EO 
- 0.1457E 0 
0.1914E- 1 
0.84597E- 1 
-0.6893E-2 
-0.4269E- 1 
0.4204E-2 

0.1 9 14E - 1 
0.19839E- 1 
0.792522-2 
- 0.42 78E - 1 
- 0.25 70E - 1 
0.23209E +5 
0.10383E- 1 
-0.2089E -2 
-0.3955E -2 
0.1227E -2 

A :  = 

0.36305E- 1 
0.621 1E+2 
0.1 1263E 0 
-0.147 1E 0 
-0.5518E-1 
0.19839E- 1 
0.3935E-2 
-0.7 165E -2 
0.5969E-2 
0.41227E-2 

-0.89042E- 1 
0.1 1263E 0 
0.32737E+2 
-0.6392E-1 
- 0.14526E 0 
0.7925E-2 
-0.8369E- 1 
-0.2829E-2 
0.89767E- 1 
0.1866E-2 

-0.14067EO 0.1457EO 
-0.1471EO -0.5518E-1 
-0.6392E- 1 -0.14526EO 
0.2547E+3 0.1908E 0 
0.1908E 0 0.8103E +3 

-0.4278E - 1 -0.257022 - 1 
-0.761 15E- 1 -0.12912E0 
0.1543E- 1 0.9222E-2 
0.2859E- 1 0.461 1E- 1 
-0.9067E -2 -0.5947E -2 

0.84597E- 1 -0.6893E-2 
- 0.7 165E - 2 

-0.8369E- 1 -0.2829E-2 
-0.76115E-1 0.1543E- 1 
-0.12912E0 0.9222E-2 
0.10383E- 1 -0.2089E-2 
0.5556 1E +5 - 0.37286E- 2 
-0.37286E-2 0.1342962E+8 
-0.3859E- 1 0.142lE-2 

0.3935E - 2 

0.2397E -2 -0.4427E - 3 

-0.426914: - 1 
0.5969E -2 
0.89767E- 1 
0.2859E - 1 
0.461 1E- 1 
-0.3955E -2 
-0.3859E- 1 
0.142 1E - 2 

0.2095672E +8 
- 0.9 10 8E - 3 

-0.2133821EO -0.3687057E+3 -0.7253901E- 1 
0.3808921E+3 -0.3030935E3.2 -0.8427658~5- 1 
-0.1808478E +3 - 0.13 18596E + 3 - 0.12579922 0 
O.l423380E+3 -0.1 135851E.t 1 -0.2367351E- 1 
-0.2416743E+2 0.574383E+2 -0.9150328E- 1 
-0.6802273EO 0.3 104929E2 -0.3843062E- 1 
0.2784792E+2 0.6651585E+2 0.596075E- 1 
0.7842818E+ 1 -0.1930097E+2 -0.4363533E-2 
-0.2694455E+2 -0.5544252E+2 -0.4200623E- 1 
-0.9225328E- 1 0.1594045E+2 -0.1626004E- 1 

0.4204E - 2 
0.4 12 7E -2 
0.1866E -2 
- 0.9067E - 2 
-0.5947E-2 
0.1227E -2 
0.2397E-2 
- 0.442 7E - 3 
- 0.9 108E - 3 
0.8662547E + 10 
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I k 1,1 = 0.2820217EO 
k 2.2 = 0.3574692E 0 
k3.3 = 0.2412807E 1 
k 4,4 = 0.52851 16E 1 
k5.5 = 0.1588654E2 
k 6,6 = 0.8573860E2 
k7.7 = 0.1146118E3 
k8,8 = 0.5686101E3 
k 9,9 = 0.6254598E 3 
k 10,10 = 0.21 14612E4 

The stiffness matrix K is calculated using equation (57) and the mode shape 

coefficients given in Table 1. This matrix is a diagonal matrix and is represented in 

terms of the diagonal elements as 

' 

K =  

I b1,l = 0.9685964E-3 
b2,2 = 0.1088608E-2 
b3.3 = 0.28340 16E-2 
b 4,4 = 0.4256808.E-2 
b5,5 = 0.7387177E-2 
b6,6 = 0.1719014E-1 
b7,7 = 0.1984237E-1 
b 8,s = 0.442 1234E- 1 

b9,9 = 0.4633434E- 1 
b 10,10 = 0.8527647.E- 1 

The damping matrix B used for this analysis is a diagonal matrix and for 

damping ratio f = 0.003, it is calculated to be 

B =  



111 

121 

131 

[41 

151 

[61 

171 

181 

191 
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I 

MT = 

APPENDIX 
The following is a summary of transformations between inertial frame and 

body-fixed frame. Here, si and ci (i= 1,2,3) denote sinei and cos& ( i =  1,2,3) 

c2 0 1 

~ 2 ~ 3  ~3 0 
~ 2 ~ 3  -s3 0 

respectively . 

(a) Spacethree Angles 

C =  

(b) Space-two Angles 

C =  

(c) Body-two Angles 

C =  
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I 

Spacecraft Control Experiment (SCOLE) ZB 

FIGURE 1 



'1 "B t 

(a) Axes in reference position (b) First rotation-about x axis 
(c) Second rotation-about y axis (d) Final rotation-about z axis 

FIGURE 2 
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x-( x-( 

Figure 3- Position Vectors in Inertial Frame 
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Figure 4- Vectors in Body-fixed Frame 
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